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The plane deformation of a piecewise-uniform body is investigated using the method of homogenization of an elastic medium 
with a maeroperiodic structure [1, 2]. The body consists of a periodic system of joined heterogeneous strips, and there is a thin 
elastic inclusion of finite length in one of the straight interfaces of the materials. By representing the stresses and displacements 
in terms of complex potentials [3] and using the conditions for the interaction of a thin elastic inclusion with the matrix [4--6] a 
system of four integrodifferential equations of the problem is obtained which has a solution which is appropriate for inclusions 
of any stiffness: from absolutely pliable, which simulates a cut, to absolutely rigid. Unlike existing solutions for defects at the 
interface of materials [7, 8], the solution obtained does not oscillate in the region of the tip of the inclusion. 

1. T H E  H O M O G E N I Z E D  M O D E L  O F  A M I C R O P E R I O D I C  
E L A S T I C  C O M P O S I T E  

We consider the el~mtic equih'brium of a composite material consisting of a periodic system of bonded elastic 
heterogeneous strips 1 and 2 (see Fig. 1), acted upon by an arbitrary external load. Suppose ~, ~ (j - 1, 2)_ .are 
the Lam6 constants,/j (j = 1, 2) is the width of strips 1 and 2, respectively, and 6 = 11 and 12 is the perloo of the 
composite, and we introduce a rectangular system of coordinates xy, the x axis of which coincides with one of tile 
straight interfaces of the materials. 

By the assumption,,; of the linear theory of elasticity of bodies with microlocal parameters [1, 2], we can represent 
the components of the vector of elastic displacements in the form 

U(x. y) = u(x. y) + h(y)p(x, y), V(x. y) = ~(x, y) + h(y)q(x, y) (1.1) 

Here u and ~ are the maerodisplacements in the directions of the x and y axes, respectively, p and q are mierolocal 
parameters which, when there are no mass forces, satisfy the system of differential equations of the equilibrium 
of a homogenized miLcropefiodic medium [8] 

Ck + ~){u.x~. + . . y y ) + ~ ( . . ~  + -  yy)+IB]/'..~ +([k]+2[Bl)q.y = 0 (1.2) 

(~ + ~)(u..~x. + ~..~v ) + ~(u.x.~- + u.~.v ) + [la lp,~. + [k]q,.~. = 0 

(~.+2fJ)q+[kl(Ux+Uy)+2[B]V,y =0, fJp+[Bl(u,:.+U,x)=O (1.3) 

( L ~ }  ~ {{x),{~)), ([~],[~ ]) -= <{~,.,. ),{~h ,.)) 
(~.,IA)-= ((~.(h.y)2 ), (IJ.(h y )2)) 

and h(.) is a specitied piecewise-linear real form function having the properties 
y+612 

Ih(y)l<~i, h(y+d)=h(y).  ~ h(t)dt=O, V y e R  
y-612 

The symbol ~.)) denotes the mean value of the 8-periodic function f(.). 
Substituting (1.1) ialto Hooke's law for each of strips 1 and 2 we obtain the expressions 

o3j = (~.j + 2tJ.j)(~.y +h.jq+hq.y)+~,j(U,x +hP.x) 

(1.4) 

oxj =(~.j + 2B i)(U.x +lq~.x)+~.i(~.y +h jq+hq.y) (1.5) 

(~a3'J = B.i(~).x +hq, x +U,y +h,f l~+hp, y) 

Here h j is the derivettive ofh~ fory belonging to thejth strip. 
Since I h(y) I < 8, Vy, for sufficiently small values of 5 we can neglect terms containing h in relations (1.2) and 
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Fig. 1. 

(1.5) (a strict proof of this operation using non-standard analysis is given in [2]). Note that we cannot omit terms 
containing the derivative h j in (1.5). 

Equations (1.1)-(1.5) describe the homogenized model of a microperiodic composite and they depend very much 
on the form of the form function h(y). For the problem considered the 8-periodic function will be chosen in the 
form 

h, , [Y-/112, 0---),~11 (1.6) 
[Yl=l[rly+(l + ~)l I/2]/(l-rl), Ii <y<8 

~ = l  I / 8 E ( 0 , 1 / 2 )  

Then 

I, j = l  
h.j=-~l/(I- 'q), j = 2  

and it follows from relations (1.3) and (1.4) that 

~ = lq~, I +(1 -rl)~. 2, B ='qlJi +(1-1"1)112 

[k]=~(~.~ -~.2), [la)=(lal-IJ2) (1.7) 

~. = q~q +q2~.2/(I -TI), I~ = qBi +TI2B2/(I-~)  

Eliminating the microlocal parametersp and q from (1.2) using (1.3) we obtain the following system of equations 
for the maerodisplacements u and 

A2u.x r + ( B + C ) D  xv + Ctt rv = O, 
, . . . .  

a I = ~ + 2B - ([ ~'] + 211.1 ])2 >0, 

B = ~ -  [~.I{[M + 2[la]~ >0, 
~+2fi 

A I D, yy + ( B + C)u,xy + CD,.r~. = 0 

A 2 = ~ + 2 B -  [k]2 >0 

C = B - [ ~  ]2 >0 
P 

(1.8) 

In a similar way, after eliminatingp and q from (1.5) we obtain 

a(J)=Bux+Alv,., a~,).=C(uy+~x), O~)=DjV,y+Ejux (1.9) yy , ,. . 

~.j 4 B j ( ~ . j + B j )  
D j = ~ . j + 2 B j A  I, E j =  ; k i+2Bj  + B, j = l , 2  

The system of equations (1.8) and relations (1.9) describe the elastic equilibrium of a medium homogenized as 
given by (1.5)-(1.6). Apart from the coefficients they are identical with the corresponding equations for an 
anisotropic medium [9]. Hence, the characteristics of the stress-strain state of the composite considered can be 
expressed, using the well-known procedure in [3, 10], in terms of two holomorphic functions ~j(.) (j = 1, 2). Here 
we must distinguish two versions of the values of the mechanical constants of the strips I and 2: 



The  stressed state o f  a laminated elastic composi te  with a thin linear inclusion 

the ease when ~tl *~ P,2. W e  have (summing from k = 1 t o  k = 2 )  

¢~yj(X,y)=2Re~,~k(zk), ~x)~(x,y)=2lm~,tkCPk(Zk) 

a~j(x,y)=2ReY.C~jt~l~(zl:), j = 1,2 

u,x(x,y)=-2Re~,plc~k(Zl~), "O.x(X,y)=21m~,tkp3-kOk(Zk) 

t t = ( t + - t _ ) / 2 ,  t 2= ( t ++ t _ ) / 2 `  Zk=x+itky, k= l ,2  

t± =I(A± +2C)A± I~ ' At t2 +B 
AI C . Pk = AIA2 _ B 2 

~,j 40-j(~,j +0-J)Pk, k,j= 1,2; A± = A-~/'A~IA2 +B 
Ckj -- ~,j +20-j ~.j +20-j 

t h e  e a s e  w h e n  ~1 : =  0-2" W e  h a v e  

t~j(x,y)=Re[Ol(Z)+Ol(Z)+O2(z)l, ox)j(x,y)=im[O2(z)] 

t~xj(x,y)=Re[ajOl(z)+aj~l(z)-O2(z) ], j = l , 2  

2C[u,x(x,y)+~.x(x,y)]= ~I~ I ( z ) - O  I (z)-O2(z) 

A I +C 2C(~.] + 2 C - A  I ) 
~¢=AI_C, a i = l +  j =  1,2; 

(A l - C ) ( ~ . i  + 2 C ) '  
Z=x+iy 
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(1.10) 

(1.11) 

2. T H E  M O D E L  O F  A T H I N  E L A S T I C  I N C L U S I O N  

The conditions for the interaction of an elastic inclusion of finite length 2a and small width 2/, localized on the 
straight interface of the materials of strips I and 2 (see Fig. 1) have the form [5, 8] 

(u~x +u~..,)l =koN-kd(o,*., +t~y2), 'O~ -1.)2 = k0/(fl+l +Oy2)- kiN 

u~" -u2 +l('L)~.x +I')2..,,') = g0-1/(fl.,,'yl+ +(I~v2) 

0~I --(~,-2 +Q,x =0, C+yl -Oxy 2 +N,x =0 

/(c+yt + 01y2)- Q(x) = 0 

I I _ I - v 0 v 0 
Nix)= j ox(x,y)dv, Q(x)= ~ t~x,.(x,y)dy, .k 0 ~ ~c I = 

-t " -t " - 20-0 ' 20-0 

(2 .1 ) 

Here P0 is the shear modulus, v0 is Poisson's ratio of the material of the inclusion, the superscript plus relates 
to the corresponding quantities on the upper side of the inclusion and the superscript minus refers to quantities 
on the lower side of the inclusion, N(x) is the axial force and q(x) is the cutting force in an arbitrary section of the 
inclusion. The system of equations (2.1) describes the deformation of the surfaces of the inclusion when acted upon 
by applied external forces and, with accuracy 0(12), takes into account the deformation of longitudinal tension and 
transverse shear of the layer [6]. 

3. T H E  S Y S T E M  O F  I N T E G R A L  E Q U A T I O N S  

Since the problem in question is linear we have 

a = a o + o ,  u=uO +u • (3.1) 

(o ° and u ° are the known tensor and vector of the elastic displacements of the multilayer composite without the 
inclusion and o* and u* is the solution of the corresponding perturbed problem). Since we are dealing with a thin 
inclusion, its presence can be simulated by sudden changes in the stresses and the derivatives of the displacements 
on the axial line of the layer 
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* * * * * 

Oyl(X,+O)-Oy2(X,'-O)= fl (X), Oxyl(X,+O)-Oxy2(X,-O)= f~ (x ) 

U x(X,+O)-u x(x,-O)= f~ (x), , . . D,x(X,+O)--D.x(X,--O)=.f4 (X) 

I f / (x) ,  Ixl<--a 
f~(x) = k = 1,2,3,4 

k0, Ixl> a 

(3.2) 

We obtain the following results from conditions (3.2) using relations (1.10), after solving the corresponding 
problems of linear coupling for the different versions considered in Section 1. 

The case when IX1 ~ 112. We have 

(-1) J . P j  1 
tYPi(Zj)= [p~_jWl(Zi)-l~w2(zj)+w~(zj)+i--w4(zi) ] 

• P l  - P 2  L " • t j  " t j  • j 

I i ft(t)d.____~t wk(zi)= 2n--'~ _. t -z )  ' j = l , 2 ;  k=i .2 ,3 ,4  (3.3) 

Substituting (3.3) into (1.10) and taking the limit as y ---> +0, taking (3.2) and the following expression [10] into account 

Wk(X':L'O)=+-Isk(x)+ 1--2~i i fk(t)dtt_x , k=1,2,3,4 
- -  f l  

we obtain the relations 

a,.l(x,+O) = o°i (x)+ 3i (x)/ 2 +,nl zS2(x) +,n21S 4(x) 

Oxyl(x,+O)=oOvt(x)+.f2(x)/2-m~lS (x)+m4jS3(x) 

u.s(x.+O) = ul~.(x)+ fa(x)l 2-m51S2(x)+m61S4(x) 
0 "o.r(x,+O ) = "O x(X)+ f4(x)l 2 -  m71S I (x)+msIS3(x), - - o o < x < o o  

(3.4) 

Here 

S k ( x ) = 2 ~  i ftft)dt k=1,2,3,4 
- a  l -- X 

pit2 - P2ll _ t2 - t I 
roll =/I/61 = /1121 -- , 11131 =1/181 = l l l 2 m l l ,  

I ; |  I l l  

p?'2-1'b, 
m41 =tlt2m21'  msI  = m71 ---tlt2m51, m = t l t 2 ( P l  - P 2 )  

n l  

T h e  case  w h e n  IJq = tt2. We  have  

(i +t¢)Ol  (z )  = wt(z).iw2(z)+2Cw3(z)+2iCw4(z) 

(1 + t¢)O 2 (z) = (~¢ - l)w I ( z ) -  i(I + l¢)w 2 ( z ) -  4Cw 3 (z) 

(3.5) 

Substituting (3.5) into (1.11) and taking the limity ~ +0, we obtain expressions which differ from (3.4) in that 
m l l  , m21 , . . . ,  msa are replaced by m21 , m22, • • • ,  ms2, where 

Ic- I  2C t¢ 
ml 2 = m32 = m62 = 2(I + r ) '  m22 = m42 = I - ~ K '  m52 = m72 = 2 C ( I  + K " " " ' ~  ' ms2 = ro l l  

Substituting the relations obtained into the conditions of the interaction of a thin elastic inclusion with a piecewise- 
uniform m e d i u m  (2.1)  and  taking (3 .1)  into  account ,  w e  obtain  the  fo l lowing  system o f  four s ingular integro-  
dif ferential  equations 

~. kS2 (~ )+~ .2kS4(~ )+  A l tP2(~)=  FI(~) 

~3kS2 (~ )  4" ~,4k $4 (~ )  + A2~02 (~ )  - A3q~ 4 (~ )  = F 2 (~ )  



Here 

T h e  s t ressed state o f  a l amina ted  elastic composi te  with a thin l inear  inclusion 

~kSt SI (~) + ~6tS3 ( ~ ) -  A3q) 3 (~) = F 3 (~) 

~.TkSI(~)+~.sI.S3(~)+A3~I(~)=F4(~), I~1< 1, k=l,2 
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(3.6) 

S.i(~)= q)~(x)dx ~p')(.~)=fj(a~), j=1,2,3,4;  ~=--, "c=-- 
: - I  " c - ~  ' a a 

F I (~) = -klO'Oi ( a ~ ) - u  O' (a~) + AlioN(-a), F 2 (~,) = -k0tJ0l (a~) + A2/oN(-a)  + A 3 V(-a) 

~(~)=¢~°yl(a~)l~to +,,)°'(a~)+ A3V(-a), F4(~)=-(I°vl(a~)+ T(-a) 

~'lk = kl talk --m5k" ~'2k = klm2k +m6k" ~'3k = ~4k = komlk 

~'Sk = mlt - m3t / ~t0' ~'6t = rest - m4t I P-0, ~'Tt = -m3t 

~.St=met ,  k=l,2, A l=ko/ I  O, A2=kl/lo,  A3=l/lo,  lo=l/a 

The required functions ~(~) must satisfy the additional conditions 

I 
~ ( l : ) d x = C i ,  J = i ' 2 ' 3 ' 4  (3.7) 

- I  

C t =Tq-a)-T(a), C2=Nt-a)-N(o) ,  C3=U(o)-U(-a), C4=V(o)-V(-a)  

The axial force N(,), the cutting force T(.), the longitudinal displacement U(.) and the vertical displacement V(.) 
at the ends w = -T-a of the inclusion are calculated from the a priori formulae [7]. 

In the case of an absolutely rigid inclusion (Ix0 = oo) we have f3(x) = f~(x) = 0, and the system of equations (3.6) 
reduces to one singular integral equation 

I ~ |q~( '~ )+ - '~2( '~ ) ]d l := - I tu° ' (a t~ ) - i~° ' (a~) ] ,  1~1<1, k = l , 2  (3.8) 
21ti _ ' Z - ~ I  rest 

If I10 = 0, we obtahlfl(x) -- f2(x) -- 0, and the integral equation for the cut on the straight interface of the materials 
of the two media ha,,; the form 

j = o 
"2~'-~ -I - "~ m2t [Oyl(a~)-i~0yl(a~)] '  I~1<1, k=  1,2 

Integral equatiom; (3.8) and (3.9) have the same structure and allow of a solution in closed form [10]. 
In the case of a thin-walled elastic inclusion we will represent the solution of (3.6) and (3.7) in the form 

u~}(~) = ( 1 - ~ 2 )  -I /2 ~. J X,,T.(~). I~1<1, j=1,2 ,3 ,4  
n=0 

(T.(.) are Chebyshev polynomials of the first kind). It then follows from (3.7) that X~ -- C/~. 
Substituting (3.10',) into the integral equations (3.6), taking into account the fact that 

(3.9) 

(3.10) 

(U.(.) are Chebyshev polynomials of the second kind), and using the usual procedure of the method of orthogonal 
polynomials, we obtain four infinite systems of linear algebraic equations, the first of which has the form (the 
summation is from m -- 1 to ~)  

x ,kx  2 + x 2 x .  4 - A , X S , , . . X .  2 - A,toX 13.2 

I 
aj n" =~4 -]~ Fj(~)U._I(~)~I_~2d~. j=1,2.3.4;  J~a = ~1.,, 

(3,11) 




