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The plane deformation of a piecewise-uniform body is investigated using the method of homogenization of an elastic medjium
with a macroperiodic structure [1, 2]. The body consists of a periodic system of joined heterogeneous strips, and there is a thin
elastic inclusion of finite length in one of the straight interfaces of the materials. By representing the stresses and displacements
in terms of complex potentials [3] and using the conditions for the interaction of a thin elastic inclusion with the matrix [4-6] a
system of four integrodifferential equations of the problem is obtained which has a solution which is appropriate for inclusions
of any stiffness: from absolutely pliable, which simulates a cut, to absolutely rigid. Unlike existing solutions for defects at the
interface of materials [7, 8], the solution obtained does not oscillate in the region of the tip of the inclusion.

1. THE HOMOGENIZED MODEL OF A MICROPERIODIC
ELASTIC COMPOSITE

We consider the elastic equilibrium of a composite material consisting of a periodic system of bonded elastic
heterogeneous strips 1 and 2 (see Fig. 1), acted upon by an arbitrary external load. Suppose A;, i; (j = 1, 2) are
the Lamé constants, /; (j = 1, 2) is the width of strips 1 and 2, respectively, and 8 = I; and I, is the period of the
composite, and we introduce a rectangular system of coordinates xy, the x axis of which coincides with one of the
straight interfaces of the materials.

By the assumptions of the linear theory of elasticity of bodies with microlocal parameters [1, 2], we can represent
the components of the vector of elastic displacements in the form

Ux, y) = u(x, y) + hpr, »), - VIx, y) =00, ) + h()g(x, y) (11

Here u and v are the macrodisplacements in the directions of the x and y axes, respectively, p and g are microlocal
parameters which, when there are no mass forces, satisfy the system of differential equations of the equilibrium
of a homogenized microperiodic medium [8]

A+ TN+, )+ TV +0 )+ MIp +(M]+2{ug , =0 1.2)
A+ [TRIC7E R L TL P Tt L} +[A]g, =0
(A +20)g +[M)u, +0 )+ 21, =0, fip+{nku, +v,)=0 (L3)

A =AWY. ARMRD = (k) (o))
i) = (k)Y (k)2

and h(-) is a specified piecewise-linear real form function having the properties

y+8/2
lh(»)< 8, h(y+d)=h(y). j h()dt=0, VyeR (1.4)
y=58/2

The symbol {f(-)) denotes the mean value of the §-periodic function f().
Substituting (1.1) into Hooke’s law for each of strips 1 and 2 we obtain the expressions

Gy =(Aj+2u; )0, +h jq+hg ) +h(u +hp )
Oy =(A;+21;)u, +hp J+A;(v, +h;q+hq ) (15)
Oy =H (V0 +hq , +u, +h;p+hp )

Here h ; is the derivative of A; for y belonging to the jth strip.
Since | A(y) | < 8, 'fy, for sufficiently small values of 8 we can neglect terms containing 4 in relations (1.2) and
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(1.5) (a strict proof of this operation using non-standard analysis is given in [2]). Note that we cannot omit terms

containing the derivative i ; in (1.5).
Equations (1.1)1.5) descnbe the homogenized model of a microperiodic composite and they depend very much
on the form of the form function k(y). For the problem considered the §-periodic function will be chosen in the

form

_fry-h12, 0=y=/ 16
h())-{[f\y+(l+n)l|/2]/“'“)' h=y=3 "

n=,/8€(0.1/2)

Then

1, =1
i ={—n/(l—n), j=2
and it follows from relations (1.3) and (1.4) that
A=nh +U-Ay,  E=mpy +(1-1H,
[Al=nh =22)  [H)=(ny—H2) 1.7

A=A 4Py /(-m),  f=npy+ndpy /(-n)

Eliminating the microlocal parameters p and g from (1.2) using (1.3) we obtain the following system of equations
for the macrodisplacements u and v

At o +(B+CY0 4, +Cuty =0, A\  +(B+ Oy +Cv =0 (1.8)
— 2 2
A|=A+ZH—M>O, Ay =A+2[I-= [A) >0
A+2pn A+20
p=3 - [MUAM+2u) ﬁ_lu} >0
7\+2p i
In a similar way, after eliminating p and g from (1.5) we obtain
(” =Bu, +Av ,, (’) =Cluy+v ), cﬂ.’:Dju_)&Eju', (1.9)
A; 4 (A +H; A;
j Ay T L, j=12

Dj=——1L—a, E

The system of equations (1.8) and relations (1.9) describe the elastic equilibrium of a medium homogenized as
given by (1.5)-(1.6). Apart from the coefficients they are identical with the corresponding equations for an
anisotropic medium [9]. Hence, the characteristics of the stress—strain state of the composite considered can be
expressed, using the well-known procedure in [3, 10}, in terms of two holomorphic functions @) (j = 1, 2). Here
we must distinguish two versions of the values of the mechanical constants of the strips 1 and 2:
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the case when p; # . We have (summing fromk = 1 tok = 2)
6, (x,¥)=2ReX.®; (7). Oy (1.3)=2Im L1, P (24)
0,j(x,¥)=2Re L C;®; (), Jj=12 (1.10)
U, (x5,)=-2ReT pp®p(z). U (x,y)=2ImE b p3, Pr(2e)
=t —t)12, =0, +1)12, g=x+ifyy. k=12
|
. ] A +20)A4 % - At +B
* AC TN T AA - B

Aj  AuiQ+p)

= Prs k,j= l,2; A:t = A]Az +B

ij

the case when J, = |1,. We have
0,;(x,y) =Re[®(2)+ B (D +D,(2)], O, (x,y) = Im[D(2)] (1.11)
0, (x.y)=Rela;®)(2)+a;®,(2)- D2 (2)),  j=12
200 (x, )+, (x,9)] = k@ () - B (2) - B, (2)

K-—AI+C _ 2C(AI+2C—A])

, ai—l+ , =1,2; z=x+iy
A-C : (A —C)()\_,- +2C)

2. THE MODEL OF A THIN ELASTIC INCLUSION

The conditions for the interaction of an elastic inclusion of finite length 2z and small width 2/, localized on the
straight interface of the materials of strips 1 and 2 (see Fig. 1) have the form [, 8]

(i, +uy M =kgN—kl(cF +0y2), v —vy = kot(c;, +06y2) -k N
uf —uy +Io]  +03 ) =g (0} +075,) 21
th _0;2 +0,=0, o.tyl —G;_vz +N,=0

I(G‘_:‘q +0':.".2)—Q(x) =0

{ ] -
N = [ 0(ady, QU= [ 6 (ey)dy, kg =iyl g =Y0
-1 a7 2pg 2pg

Here |1, is the shear modulus, v, is Poisson’s ratio of the material of the inclusion, the superscript plus relates
to the corresponding quantities on the upper side of the inclusion and the superscript minus refers to quantities
on the lower side of the inclusion, N(x) is the axial force and g(x) is the cutting force in an arbitrary section of the
inclusion. The system of equations (2.1) describes the deformation of the surfaces of the inclusion when acted upon
by applied external forces and, with accuracy 0(1%), takes into account the deformation of longitudinal tension and
transverse shear of the layer [6].

3. THE SYSTEM OF INTEGRAL EQUATIONS
Since the problem in question is linear we have

o=0"+0% u=u’+u* 3.1)

(o° and u° are the known tensor and vector of the elastic displacements of the multilayer composite without the
inclusion and ¢* and u* is the solution of the corresponding perturbed problem). Since we are dealing with a thin

inclusion, its presence can be simulated by sudden changes in the stresses and the derivatives of the displacements
on the axial line of the layer
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O (£,40) =012 (x,=0)= i (x), Gyt (X,40)= Gy (x,-0)= f5 (x)

Wy (£, 40) = (1,0) = 3 (x),  V(x,40) =0, (x,~0) = f; (x) (32)
fi(x), Ixl=a

fi(x)= k=1.2,3.4
0, IxI>a

We obtain the following results from conditions (3.2) using relations (1.10), after solving the corresponding
problems of linear coupling for the different versions considered in Section 1.
The case when J; # |1,. We have

(-1 . Pj 1
(D].(zj.): — p3__jwl(Z"-)—I—W2(Zj)+W3(Zj)+l—.W4(Zj)
I ) L tj

__ 1 L
ez =50 _’a 1-z;

=12 k=1,2,3.4 (33)

Substituting (3.3) into (1.10) and taking the limit asy — +0, taking (3.2) and the following expression [10] into account

1 1 ¢ filt)dt
) '.iO =i_ + — —— k=],2.3,4
Wi (5 20) =22 fr () + _I“ —x

we obtain the relations
0 1 (x,40) = 6% (X)+ i (X)) 241y, 55 (x) + my Sy (x)

Oy (x,+0) = 0’%., (x)+ f,(x) 2= m3 5y (x) +myy S3(x)

34)
u (k. +0)= u.(')..(.x')+f3(x)/ 2-mg Sy (x)+mgS4(x)
v, (x,+)) = Df?x(.x)+f4(x')/2—m7|S, (X)+mgyS3(x), —eo<x<eo
Here
d .
Sey=ae [ LA 1034
2r C, t—x
my | = mg =M, mypp = t2 —tl myy = mg) =l|lzln| i
m
2, — pat
myy =Htamy, ms, ____”_]2_]2[_‘ my = hHlymg), I"=I|t2([)| _[)2)
m
The case when p; = p,. We have
(14 K)® (2) = Wy (2) =i wa (2)+2Cw3(2) +2iCwy(2) (3:5)

(1+K)P,(2)= (K= Dw ()= i(} +X)w; (2)~4Cw3(2)

Substituting (3.5) into (1.11) and taking the limit y — +0, we obtain expressions which differ from (3.4) in that
myy, My, . . ., mg are replaced by my,, my,, . . . , mg,, where
K-1 2C K

m22 =gy = =, m52 =Mqy =

— —_—, Mgy =im
21+x) 1+K 2C(1+x) g2 =7

mypy =myy = Mgy =

Substituting the relations obtained into the conditions of the interaction of a thin elastic inclusion with a piecewise-
uniform medium (2.1) and taking (3.1) into account, we obtain the following system of four singular integro-
differential equations

MkS2(E)+ A0, 84 () + A 91 () = F(E)
A S2(E) + A4, Sa(E)+ A0, (E)~ A30,4(E) = Fy (E)
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A5 Si(8)+AgrS1(8)— Az@3(8) = R (E) (3.6)
AS1(8) + g S3(8)+ A0y (B) = Fy(§),  1EI<], k=12

Here

1 b ej(ndr
S,-(&)—M _I, -

F(&)=-k 0% (aE)~u¥ (aB) + AlgN(=a), Fy(§)=~koO¥(aE)+ AyloN(—a)+A;V(-a)

t

, i . E=X ==
. 958)=filab), j=123.4 §-a, T=-

Fa(8) = 6%1(aB) /1o +07 (a8)+ A3V(=a), F4(E)==01y (a8)+T(-a)
Mg =kymy —msp. Ay =kimyy +mep. Ayp =hgy = komyy
Asg =mye—my [WMo. Nk =mMge —mygp/Ro,  Agy =y

ASk =My, k=12, I\|=k0/’0, A2=k|/,0, A3=|/10’ 10=I/a

The required functions ¢;/(§) must satisfy the additional conditions
1
joj(dr=C;, j=1234 (37
-1

C, =T(-a)-T(a). Cy=N(-a)-N(a), Cy=Ula)-U(-a), Cy=Via)-V(-a)

The axial force N("), the cutting force T(-), the longitudinal displacement U(-) and the vertical displacement V(-)
at the ends w = Fa of the inclusion are calculated from the a priori formulae [7].

In the case of an absolutely rigid inclusion (j1y = =) we have f3(x) = f4(x) = 0, and the system of equations (3.6)
reduces to one singular integral equation

1 } lei(m+igy(] , __ |

(4% (a&)-iv” = 3.8
XTI ) '"Sklu (af)—iv’ (a8)). lEI<l, k=12 (3.8)

If po = 0, we obtain f(x) = fo(x) = 0, and the integral equation for the cut on the straight interface of the materials
of the two media has the form

1 ’ [y
S e rieaml L 160 g -ind, @B)) 1<l k=12 (3.9
2ri -1 T—é My :

Integral equations (3.8) and (3.9) have the same structure and allow of a solution in closed form [10].
In the case of a thin-walled elastic inclusion we will represent the solution of (3.6) and (3.7) in the form

wp(8)=(1-EH)""2 F X/T,(8). 1BI<l, j=1234 (3.10)
n=0

(T»(-) are Chebyshev polynomials of the first kind). It then follows from (3.7) that X{, = Cjn.
Substituting (3.10) into the integral equations (3.6), taking into account the fact that

. xi
‘pj(§)=X{,(-125+arcsin§)—(l—§2)”2Z “2Up @), j=1234

n=l

(Un(-) are Chebyshev polynomials of the second kind), and using the usual procedure of the method of orthogonal
polynomials, we obtain four infinite systems of linear algebraic equations, the first of which has the form (the
summation is from 1 = 1 to )

X240y XE = A S B, X2 =al - Ao X3B,
G.11)

——

4
oh == [ Fj&W, ,GN1-E2d, j=1234; B, =1,
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8”“ +‘_1)IH-"I]

B, ., = —nlmz -(n—l)2][n2 -(m+l)]2 '
0, m=n—-1, m=n+l

m#n-1, m#£n+1

(Om, » are Kronecker deltas). The remaining equations have a similar structure.

Using the estimates obtained previously [5] it can be shown that system (3.11) is quasi-regular for any values of
the geometrical and physical parameters of the problem, and, consequently, we can use the reduction method on
a computer to solve it. By determining the coefficients X%, (j = 1, 2, 3, 4) of expansions (3.10) we can use (3.3)
and (3.5) to find the complex potentials () (j = 1, 2) and hence the stresses and displacements (1.10) and (111)
at an arbitrary point of the composite.

Note that when [u] = 0, by putting in addition A, = X,, we obtain from (3.6) the well-known results of the theory
of thin elastic inclusions in a uniform medium {4, 5, 7).
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